CS 312
Algorithm Design

Dan Sheldon
sheldon@cs.umass.edu
dsheldon@mtholyoke.edu
http://people.cs.umass.edu/ ~sheldon/teaching/cs312/

Office Clapp 200

Mon 4:15-5:15

Tues 10-11

Thurs By appointment

Today

@ Introductions
@ Logistics
@ What is algorithm design?

@ An example: Stable Matching

What is Algorithm
Design?

@ How do you write a computer program to
solve a complex problem?

@ Routing packets on the Internet

@ Computing similarity between DNA
sequences

® Scheduling final exams at a university

What is Algorithm
Design?

@ DNA sequence similarity
@ Input: Two n-bit strings (AGGCTACC, CAGGCTAC)

@ Output: number between O and 1
® ???

@ Even if the objective is clear, we are often
not ready to start coding right away!

What is Algorithm
Design?

@ Formulate the problem precisely
@ Design an algorithm
@ Prove the algorithm is correct

@ Analyze the algorithms runtime

An Example:
Stable Matching Problem

Goal Given a set of preference among colleges and applications,
design a self-reinforcing admissions process

What is self-reinforcing? Easier to describe when something is
not self-reinforcing

College c prefers student s to admitted student

Student s prefers college ¢ to admitted college

College ¢ and student s are an unstable pair (s should transfer)

Stable assignment: assignment with no unstable pairs

Stable Matching Problem

@ Goal. Given a set of preferences among colleges and high school
students, design an admissions process with these properties:

@ Perfect matching: everyone is matched one-to-one.
@ Each college gets exactly one student.
@ Each student gets exactly one college.

@ Stability: no incentive to deviate from matching

@ In matching M, pair (c,s) is an unstable pair if college ¢ and
student s prefer each other to current partners.

@ Unstable pair (c,s) could each improve by switching. Chaos!

@ Stable matching: perfect matching with no unstable pairs

Stable Roommate Problem

@ Goal Given 2n students, find a "suitable" matching.

@ Students rank each other.

Preferences
Alice Bob Carol | Doofus

Bob Carol | Alice | Doofus
Carol | Alice Bob | Doofus
Doofus | Alice Bob Carol

Is there a stable matching?

More Questions

@ If the sets being matched are disjoint, as in
the college-student problem, is there always
a stable matching?

@ Is the stable matching unique?

@ Can we find a stable matching efficiently?

Thoughts on Solving the
Problem

@ Initially, no colleges and students are matched.

@ Pick an arbitrary college and have it admit its
favorite student. Are we guaranteed that pair will
be part of a stable matching?

® Should a student accept her first offer?
@ If not, what should the student do?

® When are we done? Do we need to consider all
combinations???

Propose-and-Reject
(Gale-Shapley) Algorithm

Initialize each college and student to be free.
while (some college is free and hasn't made
offers to every student) ({
Choose such a college c
s = 1%t student on c¢’s list to whom c has not
made offer
if (s is free)
assign c and s to be engaged
else if (s prefers ¢ to current college c’)
assign ¢ and s to be engaged, and c¢’ to be
free
else
s rejects c

Questions about the
Gale-Shapley Algorithm

@ Does the algorithm terminate?

@ Is the matching perfect, that is, is it one-to-
one?

@ Is the matching stable?

Proof by Contradiction
(Review)

@ Goal: prove that A is true

1. Assume A is false.

2.Reason to a contradiction with some other
known fact

3.Conclude that A must therefore be true.

What is Algorithm
Design?

@ Formulate the problem precisely*
@ Design an algorithm
@ Prove the algorithm is correct

@ Analyze the algorithms runtime

*Gale-Shapley algorithm is actually used to
match residents to hospitals

An Iterative Process

@ Usually dont get it right the first time
@ May be no correct answer

@ Stable roommate problem
@ May be no correct efficient answer

@ NP-completeness

Course Goals

@ Learn to apply this process (by practice!)
@ Learn specific algorithm design techniques

@ Greedy, Divide-and-Conquer, Dynamic
Programming, Network Flows

@ Prove no exact efficient solution is possible

@ Intractability and NP-completness

