
CS 312
Algorithm Design

Dan Sheldon
sheldon@cs.umass.edu

dsheldon@mtholyoke.edu
http://people.cs.umass.edu/~sheldon/teaching/cs312/

Office Clapp 200
Mon 4:15-5:15
Tues 10-11
Thurs By appointment

Today

Introductions

Logistics

What is algorithm design?

An example: Stable Matching

What is Algorithm
Design?

How do you write a computer program to
solve a complex problem?

Routing packets on the Internet

Computing similarity between DNA
sequences

Scheduling final exams at a university

What is Algorithm
Design?

DNA sequence similarity
Input: two n-bit strings (AGGCTACC, CAGGCTAC)

Output: number between 0 and 1
???

Even if the objective is clear, we are often
not ready to start coding right away!

What is Algorithm
Design?

Formulate the problem precisely

Design an algorithm

Prove the algorithm is correct

Analyze the algorithm’s runtime

An Example:
Stable Matching Problem

Goal. Given a set of preference among colleges and applications,
design a self-reinforcing admissions process

What is self-reinforcing? Easier to describe when something is
not self-reinforcing

College c prefers student s to admitted student
Student s prefers college c to admitted college

College c and student s are an unstable pair (s should transfer)

Stable assignment: assignment with no unstable pairs

Stable Matching Problem
Goal. Given a set of preferences among colleges and high school
students, design an admissions process with these properties:

Perfect matching: everyone is matched one-to-one.
Each college gets exactly one student.
Each student gets exactly one college.

Stability::no incentive to deviate from matching
In matching M, pair (c,s) is an unstable pair if college c and

student s prefer each other to current partners.
Unstable pair (c,s) could each improve by switching. Chaos!

Stable matching: perfect matching with no unstable pairs

Question 1

Can we always find a stable matching?

Stable Roommate Problem
Goal. Given 2n students, find a "suitable" matching.

Students rank each other.

PreferencesPreferencesPreferences
Alice Bob Carol Doofus
Bob Carol Alice Doofus
Carol Alice Bob Doofus
Doofus Alice Bob Carol

Is there a stable matching?

More Questions

If the sets being matched are disjoint, as in
the college-student problem, is there always
a stable matching?

Is the stable matching unique?

Can we find a stable matching efficiently?

Thoughts on Solving the
Problem

Initially, no colleges and students are matched.

Pick an arbitrary college and have it admit its
favorite student. Are we guaranteed that pair will
be part of a stable matching?

Should a student accept her first offer?
If not, what should the student do?

When are we done? Do we need to consider all
combinations???

Propose-and-Reject
(Gale-Shapley) Algorithm

Initialize each college and student to be free.
while (some college is free and hasn't made
offers to every student) {

Choose such a college c
s = 1st student on c’s list to whom c has not
 made offer
if (s is free)

assign c and s to be engaged
else if (s prefers c to current college c’)

assign c and s to be engaged, and c’ to be
free

else
s rejects c

}

Questions about the
Gale-Shapley Algorithm

Does the algorithm terminate?

Is the matching perfect, that is, is it one-to-
one?

Is the matching stable?

Proof by Contradiction
(Review)

Goal: prove that A is true

1. Assume A is false.
2.Reason to a contradiction with some other

known fact
3.Conclude that A must therefore be true.

What is Algorithm
Design?

Formulate the problem precisely*

Design an algorithm

Prove the algorithm is correct

Analyze the algorithm’s runtime

*Gale-Shapley algorithm is actually used to
match residents to hospitals

An Iterative Process

Usually don’t get it right the first time

May be no correct answer

Stable roommate problem

May be no correct efficient answer

NP-completeness

Course Goals

Learn to apply this process (by practice!)

Learn specific algorithm design techniques

Greedy, Divide-and-Conquer, Dynamic
Programming, Network Flows

Prove no exact efficient solution is possible

Intractability and NP-completness

